Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Diagnostics (Basel) ; 13(11)2023 Jun 02.
Article in English | MEDLINE | ID: covidwho-20235054

ABSTRACT

BACKGROUND AND MOTIVATION: Lung computed tomography (CT) techniques are high-resolution and are well adopted in the intensive care unit (ICU) for COVID-19 disease control classification. Most artificial intelligence (AI) systems do not undergo generalization and are typically overfitted. Such trained AI systems are not practical for clinical settings and therefore do not give accurate results when executed on unseen data sets. We hypothesize that ensemble deep learning (EDL) is superior to deep transfer learning (TL) in both non-augmented and augmented frameworks. METHODOLOGY: The system consists of a cascade of quality control, ResNet-UNet-based hybrid deep learning for lung segmentation, and seven models using TL-based classification followed by five types of EDL's. To prove our hypothesis, five different kinds of data combinations (DC) were designed using a combination of two multicenter cohorts-Croatia (80 COVID) and Italy (72 COVID and 30 controls)-leading to 12,000 CT slices. As part of generalization, the system was tested on unseen data and statistically tested for reliability/stability. RESULTS: Using the K5 (80:20) cross-validation protocol on the balanced and augmented dataset, the five DC datasets improved TL mean accuracy by 3.32%, 6.56%, 12.96%, 47.1%, and 2.78%, respectively. The five EDL systems showed improvements in accuracy of 2.12%, 5.78%, 6.72%, 32.05%, and 2.40%, thus validating our hypothesis. All statistical tests proved positive for reliability and stability. CONCLUSION: EDL showed superior performance to TL systems for both (a) unbalanced and unaugmented and (b) balanced and augmented datasets for both (i) seen and (ii) unseen paradigms, validating both our hypotheses.

2.
Diagnostics (Basel) ; 12(6)2022 Jun 16.
Article in English | MEDLINE | ID: covidwho-2199863

ABSTRACT

BACKGROUND: The previous COVID-19 lung diagnosis system lacks both scientific validation and the role of explainable artificial intelligence (AI) for understanding lesion localization. This study presents a cloud-based explainable AI, the "COVLIAS 2.0-cXAI" system using four kinds of class activation maps (CAM) models. METHODOLOGY: Our cohort consisted of ~6000 CT slices from two sources (Croatia, 80 COVID-19 patients and Italy, 15 control patients). COVLIAS 2.0-cXAI design consisted of three stages: (i) automated lung segmentation using hybrid deep learning ResNet-UNet model by automatic adjustment of Hounsfield units, hyperparameter optimization, and parallel and distributed training, (ii) classification using three kinds of DenseNet (DN) models (DN-121, DN-169, DN-201), and (iii) validation using four kinds of CAM visualization techniques: gradient-weighted class activation mapping (Grad-CAM), Grad-CAM++, score-weighted CAM (Score-CAM), and FasterScore-CAM. The COVLIAS 2.0-cXAI was validated by three trained senior radiologists for its stability and reliability. The Friedman test was also performed on the scores of the three radiologists. RESULTS: The ResNet-UNet segmentation model resulted in dice similarity of 0.96, Jaccard index of 0.93, a correlation coefficient of 0.99, with a figure-of-merit of 95.99%, while the classifier accuracies for the three DN nets (DN-121, DN-169, and DN-201) were 98%, 98%, and 99% with a loss of ~0.003, ~0.0025, and ~0.002 using 50 epochs, respectively. The mean AUC for all three DN models was 0.99 (p < 0.0001). The COVLIAS 2.0-cXAI showed 80% scans for mean alignment index (MAI) between heatmaps and gold standard, a score of four out of five, establishing the system for clinical settings. CONCLUSIONS: The COVLIAS 2.0-cXAI successfully showed a cloud-based explainable AI system for lesion localization in lung CT scans.

3.
J Public Health Res ; 11(4): 22799036221115779, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2139072

ABSTRACT

Background: Due to the high prevalence of hepatic steatosis (HS), the aim of the study is to verify the frequency of HS incidentally detected in chest computed tomography (CT) imaging in our population affected by SARS-CoV-2 and to investigate its association with the severity of the infection and outcome in terms of hospitalization. Design and methods: We retrospectively analyzed 500 patients with flu syndrome and clinically suspected of having Sars-CoV-2 infection who underwent unenhanced chest CT and have positive RT-PCR tests for Sars-CoV-2 RNA. Two radiologists both with >5 years of thoracic imaging experience, evaluated the images in consensus, without knowing the RT-PCR results. Liver density was measured by a region of interest (ROI), using a liver attenuation value ≤40 Hounsfield units (HU). Results: On 480 patients, 23.1% (111/480) had an incidental findings of HS on chest CT. The steatosis group, included 83 (74.7%) males and 28 (25.3%) females. Patients with HS were more likely to be hospitalized in the intensive care unit (ICU). On univariate analysis, there is a correlation between probability to be intubate (access in the ICU) and HS: patients with HS are twice as likely to be intubated (OR 2.04, CI 95% 1.11-3.73). Conclusion: Chest CT is an important diagnostic tool for COVID-19 and can provide information about the prognosis of the disease. HS can easily be detected on chest CT taken for the diagnosis of the COVID-19 disease, is an important sign for a poor prognosis and possible predictor of admission in ICU.

4.
J Med Syst ; 46(10): 62, 2022 Aug 21.
Article in English | MEDLINE | ID: covidwho-2000034

ABSTRACT

Variations in COVID-19 lesions such as glass ground opacities (GGO), consolidations, and crazy paving can compromise the ability of solo-deep learning (SDL) or hybrid-deep learning (HDL) artificial intelligence (AI) models in predicting automated COVID-19 lung segmentation in Computed Tomography (CT) from unseen data leading to poor clinical manifestations. As the first study of its kind, "COVLIAS 1.0-Unseen" proves two hypotheses, (i) contrast adjustment is vital for AI, and (ii) HDL is superior to SDL. In a multicenter study, 10,000 CT slices were collected from 72 Italian (ITA) patients with low-GGO, and 80 Croatian (CRO) patients with high-GGO. Hounsfield Units (HU) were automatically adjusted to train the AI models and predict from test data, leading to four combinations-two Unseen sets: (i) train-CRO:test-ITA, (ii) train-ITA:test-CRO, and two Seen sets: (iii) train-CRO:test-CRO, (iv) train-ITA:test-ITA. COVILAS used three SDL models: PSPNet, SegNet, UNet and six HDL models: VGG-PSPNet, VGG-SegNet, VGG-UNet, ResNet-PSPNet, ResNet-SegNet, and ResNet-UNet. Two trained, blinded senior radiologists conducted ground truth annotations. Five types of performance metrics were used to validate COVLIAS 1.0-Unseen which was further benchmarked against MedSeg, an open-source web-based system. After HU adjustment for DS and JI, HDL (Unseen AI) > SDL (Unseen AI) by 4% and 5%, respectively. For CC, HDL (Unseen AI) > SDL (Unseen AI) by 6%. The COVLIAS-MedSeg difference was < 5%, meeting regulatory guidelines.Unseen AI was successfully demonstrated using automated HU adjustment. HDL was found to be superior to SDL.


Subject(s)
COVID-19 , Deep Learning , Artificial Intelligence , COVID-19/diagnostic imaging , Humans , Lung/diagnostic imaging , Tomography, X-Ray Computed/methods
5.
Diagnostics (Basel) ; 12(5)2022 May 21.
Article in English | MEDLINE | ID: covidwho-1953134

ABSTRACT

BACKGROUND: COVID-19 is a disease with multiple variants, and is quickly spreading throughout the world. It is crucial to identify patients who are suspected of having COVID-19 early, because the vaccine is not readily available in certain parts of the world. METHODOLOGY: Lung computed tomography (CT) imaging can be used to diagnose COVID-19 as an alternative to the RT-PCR test in some cases. The occurrence of ground-glass opacities in the lung region is a characteristic of COVID-19 in chest CT scans, and these are daunting to locate and segment manually. The proposed study consists of a combination of solo deep learning (DL) and hybrid DL (HDL) models to tackle the lesion location and segmentation more quickly. One DL and four HDL models-namely, PSPNet, VGG-SegNet, ResNet-SegNet, VGG-UNet, and ResNet-UNet-were trained by an expert radiologist. The training scheme adopted a fivefold cross-validation strategy on a cohort of 3000 images selected from a set of 40 COVID-19-positive individuals. RESULTS: The proposed variability study uses tracings from two trained radiologists as part of the validation. Five artificial intelligence (AI) models were benchmarked against MedSeg. The best AI model, ResNet-UNet, was superior to MedSeg by 9% and 15% for Dice and Jaccard, respectively, when compared against MD 1, and by 4% and 8%, respectively, when compared against MD 2. Statistical tests-namely, the Mann-Whitney test, paired t-test, and Wilcoxon test-demonstrated its stability and reliability, with p < 0.0001. The online system for each slice was <1 s. CONCLUSIONS: The AI models reliably located and segmented COVID-19 lesions in CT scans. The COVLIAS 1.0Lesion lesion locator passed the intervariability test.

6.
Diagnostics ; 12(6):1482, 2022.
Article in English | MDPI | ID: covidwho-1894262

ABSTRACT

Background: The previous COVID-19 lung diagnosis system lacks both scientific validation and the role of explainable artificial intelligence (AI) for understanding lesion localization. This study presents a cloud-based explainable AI, the 'COVLIAS 2.0-cXAI';system using four kinds of class activation maps (CAM) models. Methodology: Our cohort consisted of ~6000 CT slices from two sources (Croatia, 80 COVID-19 patients and Italy, 15 control patients). COVLIAS 2.0-cXAI design consisted of three stages: (i) automated lung segmentation using hybrid deep learning ResNet-UNet model by automatic adjustment of Hounsfield units, hyperparameter optimization, and parallel and distributed training, (ii) classification using three kinds of DenseNet (DN) models (DN-121, DN-169, DN-201), and (iii) validation using four kinds of CAM visualization techniques: gradient-weighted class activation mapping (Grad-CAM), Grad-CAM++, score-weighted CAM (Score-CAM), and FasterScore-CAM. The COVLIAS 2.0-cXAI was validated by three trained senior radiologists for its stability and reliability. The Friedman test was also performed on the scores of the three radiologists. Results: The ResNet-UNet segmentation model resulted in dice similarity of 0.96, Jaccard index of 0.93, a correlation coefficient of 0.99, with a figure-of-merit of 95.99%, while the classifier accuracies for the three DN nets (DN-121, DN-169, and DN-201) were 98%, 98%, and 99% with a loss of ~0.003, ~0.0025, and ~0.002 using 50 epochs, respectively. The mean AUC for all three DN models was 0.99 (p < 0.0001). The COVLIAS 2.0-cXAI showed 80% scans for mean alignment index (MAI) between heatmaps and gold standard, a score of four out of five, establishing the system for clinical settings. Conclusions: The COVLIAS 2.0-cXAI successfully showed a cloud-based explainable AI system for lesion localization in lung CT scans.

7.
Diagnostics ; 12(5):1283, 2022.
Article in English | MDPI | ID: covidwho-1857785

ABSTRACT

Background: COVID-19 is a disease with multiple variants, and is quickly spreading throughout the world. It is crucial to identify patients who are suspected of having COVID-19 early, because the vaccine is not readily available in certain parts of the world. Methodology: Lung computed tomography (CT) imaging can be used to diagnose COVID-19 as an alternative to the RT-PCR test in some cases. The occurrence of ground-glass opacities in the lung region is a characteristic of COVID-19 in chest CT scans, and these are daunting to locate and segment manually. The proposed study consists of a combination of solo deep learning (DL) and hybrid DL (HDL) models to tackle the lesion location and segmentation more quickly. One DL and four HDL models-namely, PSPNet, VGG-SegNet, ResNet-SegNet, VGG-UNet, and ResNet-UNet-were trained by an expert radiologist. The training scheme adopted a fivefold cross-validation strategy on a cohort of 3000 images selected from a set of 40 COVID-19-positive individuals. Results: The proposed variability study uses tracings from two trained radiologists as part of the validation. Five artificial intelligence (AI) models were benchmarked against MedSeg. The best AI model, ResNet-UNet, was superior to MedSeg by 9% and 15% for Dice and Jaccard, respectively, when compared against MD 1, and by 4% and 8%, respectively, when compared against MD 2. Statistical tests-namely, the Mann–Whitney test, paired t-test, and Wilcoxon test-demonstrated its stability and reliability, with p < 0.0001. The online system for each slice was <1 s. Conclusions: The AI models reliably located and segmented COVID-19 lesions in CT scans. The COVLIAS 1.0Lesion lesion locator passed the intervariability test.

8.
Comput Biol Med ; 146: 105571, 2022 07.
Article in English | MEDLINE | ID: covidwho-1850900

ABSTRACT

BACKGROUND: COVLIAS 1.0: an automated lung segmentation was designed for COVID-19 diagnosis. It has issues related to storage space and speed. This study shows that COVLIAS 2.0 uses pruned AI (PAI) networks for improving both storage and speed, wiliest high performance on lung segmentation and lesion localization. METHOD: ology: The proposed study uses multicenter ∼9,000 CT slices from two different nations, namely, CroMed from Croatia (80 patients, experimental data), and NovMed from Italy (72 patients, validation data). We hypothesize that by using pruning and evolutionary optimization algorithms, the size of the AI models can be reduced significantly, ensuring optimal performance. Eight different pruning techniques (i) differential evolution (DE), (ii) genetic algorithm (GA), (iii) particle swarm optimization algorithm (PSO), and (iv) whale optimization algorithm (WO) in two deep learning frameworks (i) Fully connected network (FCN) and (ii) SegNet were designed. COVLIAS 2.0 was validated using "Unseen NovMed" and benchmarked against MedSeg. Statistical tests for stability and reliability were also conducted. RESULTS: Pruning algorithms (i) FCN-DE, (ii) FCN-GA, (iii) FCN-PSO, and (iv) FCN-WO showed improvement in storage by 92.4%, 95.3%, 98.7%, and 99.8% respectively when compared against solo FCN, and (v) SegNet-DE, (vi) SegNet-GA, (vii) SegNet-PSO, and (viii) SegNet-WO showed improvement by 97.1%, 97.9%, 98.8%, and 99.2% respectively when compared against solo SegNet. AUC > 0.94 (p < 0.0001) on CroMed and > 0.86 (p < 0.0001) on NovMed data set for all eight EA model. PAI <0.25 s per image. DenseNet-121-based Grad-CAM heatmaps showed validation on glass ground opacity lesions. CONCLUSIONS: Eight PAI networks that were successfully validated are five times faster, storage efficient, and could be used in clinical settings.


Subject(s)
COVID-19 , Deep Learning , COVID-19/diagnostic imaging , COVID-19 Testing , Humans , Image Processing, Computer-Assisted/methods , Lung/diagnostic imaging , Neural Networks, Computer , Reproducibility of Results , Tomography, X-Ray Computed/methods
9.
J Public Health Res ; 11(2)2022 Mar 22.
Article in English | MEDLINE | ID: covidwho-1753738

ABSTRACT

BACKGROUND: Our aim is to evaluate the possible persistence of lung parenchyma alterations, in patients who have recovered from Covid-19. DESIGN AND METHODS: We enrolled a cohort of 115 patients affected by Covid-19, who performed a chest CT scan in the Emergency Department and a chest CT 18 months after hospital discharge. We performed a comparison between chest CT scan 18 months after discharge and spirometric data of patients enrolled. We obtained quantitative scores related to well-aerated parenchyma, interstitial lung disease and parenchymal consolidation. A radiologist recorded the characteristics indicated by the Fleischner Society and "fibrotic like" changes, expressed through a CT severity score ranging from 0 (no involvement) to 25 (maximum involvement). RESULTS: 115 patients (78 men, 37 women; mean age 60.15 years old ±12.52). On quantitative analysis, after 18 months, the volume of normal ventilated parenchyma was significantly increased (16.34 points on average ±14.54, p<0.0001). Ground-glass opacities and consolidation values tend to decrease (-9.80 and -6.67 points, p<0.0001). On semiquantitative analysis, pneumonia extension, reactive lymph nodes and crazy paving reached statistical significance (p<0.0001). The severity score decreased by 2.77 points on average (SD 4.96; p<0.0001). There were not statistically significant changes on "fibrotic-like" changes correlated with level of treatment and there was not a statistically significant correlation between CT lung score and spirometric results obtained 18 months after discharge. CONCLUSIONS: Patients recovered from Covid-19 seem to have an improvement of ventilated parenchyma and "fibrotic-like" alterations. The level of treatment does not appear to influence fibrotic changes.

10.
Eur Radiol ; 32(6): 4314-4323, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1637024

ABSTRACT

INTRODUCTION: Computer-Aided Lung Informatics for Pathology Evaluation and Ratings (CALIPER) software has already been widely used in the evaluation of interstitial lung diseases (ILD) but has not yet been tested in patients affected by COVID-19. Our aim was to use it to describe the relationship between Coronavirus Disease 2019 (COVID-19) outcome and the CALIPER-detected pulmonary vascular-related structures (VRS). MATERIALS AND METHODS: We performed a multicentric retrospective study enrolling 570 COVID-19 patients who performed a chest CT in emergency settings in two different institutions. Fifty-three age- and sex-matched healthy controls were also identified. Chest CTs were analyzed with CALIPER identifying the percentage of VRS over the total lung parenchyma. Patients were followed for up to 72 days recording mortality and required intensity of care. RESULTS: There was a statistically significant difference in VRS between COVID-19-positive patients and controls (median (iqr) 4.05 (3.74) and 1.57 (0.40) respectively, p = 0.0001). VRS showed an increasing trend with the severity of care, p < 0.0001. The univariate Cox regression model showed that VRS increase is a risk factor for mortality (HR 1.17, p < 0.0001). The multivariate analysis demonstrated that VRS is an independent explanatory factor of mortality along with age (HR 1.13, p < 0.0001). CONCLUSION: Our study suggests that VRS increases with the required intensity of care, and it is an independent explanatory factor for mortality. KEY POINTS: • The percentage of vascular-related structure volume (VRS) in the lung is significatively increased in COVID-19 patients. • VRS showed an increasing trend with the required intensity of care, test for trend p< 0.0001. • Univariate and multivariate Cox models showed that VRS is a significant and independent explanatory factor of mortality.


Subject(s)
COVID-19 , Humans , Informatics , Lung/diagnostic imaging , Retrospective Studies , Software
11.
Diagnostics (Basel) ; 11(12)2021 Dec 15.
Article in English | MEDLINE | ID: covidwho-1572404

ABSTRACT

(1) Background: COVID-19 computed tomography (CT) lung segmentation is critical for COVID lung severity diagnosis. Earlier proposed approaches during 2020-2021 were semiautomated or automated but not accurate, user-friendly, and industry-standard benchmarked. The proposed study compared the COVID Lung Image Analysis System, COVLIAS 1.0 (GBTI, Inc., and AtheroPointTM, Roseville, CA, USA, referred to as COVLIAS), against MedSeg, a web-based Artificial Intelligence (AI) segmentation tool, where COVLIAS uses hybrid deep learning (HDL) models for CT lung segmentation. (2) Materials and Methods: The proposed study used 5000 ITALIAN COVID-19 positive CT lung images collected from 72 patients (experimental data) that confirmed the reverse transcription-polymerase chain reaction (RT-PCR) test. Two hybrid AI models from the COVLIAS system, namely, VGG-SegNet (HDL 1) and ResNet-SegNet (HDL 2), were used to segment the CT lungs. As part of the results, we compared both COVLIAS and MedSeg against two manual delineations (MD 1 and MD 2) using (i) Bland-Altman plots, (ii) Correlation coefficient (CC) plots, (iii) Receiver operating characteristic curve, and (iv) Figure of Merit and (v) visual overlays. A cohort of 500 CROATIA COVID-19 positive CT lung images (validation data) was used. A previously trained COVLIAS model was directly applied to the validation data (as part of Unseen-AI) to segment the CT lungs and compare them against MedSeg. (3) Result: For the experimental data, the four CCs between COVLIAS (HDL 1) vs. MD 1, COVLIAS (HDL 1) vs. MD 2, COVLIAS (HDL 2) vs. MD 1, and COVLIAS (HDL 2) vs. MD 2 were 0.96, 0.96, 0.96, and 0.96, respectively. The mean value of the COVLIAS system for the above four readings was 0.96. CC between MedSeg vs. MD 1 and MedSeg vs. MD 2 was 0.98 and 0.98, respectively. Both had a mean value of 0.98. On the validation data, the CC between COVLIAS (HDL 1) vs. MedSeg and COVLIAS (HDL 2) vs. MedSeg was 0.98 and 0.99, respectively. For the experimental data, the difference between the mean values for COVLIAS and MedSeg showed a difference of <2.5%, meeting the standard of equivalence. The average running times for COVLIAS and MedSeg on a single lung CT slice were ~4 s and ~10 s, respectively. (4) Conclusions: The performances of COVLIAS and MedSeg were similar. However, COVLIAS showed improved computing time over MedSeg.

12.
J Public Health Res ; 10(3)2021 Apr 19.
Article in English | MEDLINE | ID: covidwho-1444405

ABSTRACT

BACKGROUND: In December 2019, a cluster of unknown etiology pneumonia cases occurred in Wuhan, China leading to identification of the responsible pathogen as SARS-coV-2. Since then, the coronavirus disease 2019 (COVID-19) has spread to the entire world. Computed Tomography (CT) is frequently used to assess severity and complications of COVID-19 pneumonia. The purpose of this study is to compare the CT patterns and clinical characteristics in intensive care unit (ICU) and non-ICU patients with COVID-19 pneumonia. DESIGN AND METHODS: This retrospective study included 218 consecutive patients (136 males; 82 females; mean age 63±15 years) with laboratory-confirmed SARS-coV-2. Patients were categorized in two different groups: (a) ICU patients and (b) non-ICU inpatients. We assessed the type and extent of pulmonary opacities on chest CT exams and recorded the information on comorbidities and laboratory values for all patients. RESULTS: Of the 218 patients, 23 (20 males: 3 females; mean age 60 years) required ICU admission, 195 (118 males: 77 females, mean age 64 years) were admitted to a clinical ward. Compared with non-ICU patients, ICU patients were predominantly males (60% versus 83% p=0.03), had more comorbidities, a positive CRP (p=0.04) and higher LDH values (p=0.008). ICU patients' chest CT demonstrated higher incidence of consolidation (p=0.03), mixed lesions (p=0.01), bilateral opacities (p<0.01) and overall greater lung involvement by consolidation (p=0.02) and GGO (p=0.001). CONCLUSIONS: CT imaging features of ICU patients affected by COVID-19 are significantly different compared with non-ICU patients. Identification of CT features could assist in a stratification of the disease severity and supportive treatment.

13.
J Pers Med ; 11(6)2021 Jun 03.
Article in English | MEDLINE | ID: covidwho-1259528

ABSTRACT

Pulmonary parenchymal and vascular damage are frequently reported in COVID-19 patients and can be assessed with unenhanced chest computed tomography (CT), widely used as a triaging exam. Integrating clinical data, chest CT features, and CT-derived vascular metrics, we aimed to build a predictive model of in-hospital mortality using univariate analysis (Mann-Whitney U test) and machine learning models (support vectors machines (SVM) and multilayer perceptrons (MLP)). Patients with RT-PCR-confirmed SARS-CoV-2 infection and unenhanced chest CT performed on emergency department admission were included after retrieving their outcome (discharge or death), with an 85/15% training/test dataset split. Out of 897 patients, the 229 (26%) patients who died during hospitalization had higher median pulmonary artery diameter (29.0 mm) than patients who survived (27.0 mm, p < 0.001) and higher median ascending aortic diameter (36.6 mm versus 34.0 mm, p < 0.001). SVM and MLP best models considered the same ten input features, yielding a 0.747 (precision 0.522, recall 0.800) and 0.844 (precision 0.680, recall 0.567) area under the curve, respectively. In this model integrating clinical and radiological data, pulmonary artery diameter was the third most important predictor after age and parenchymal involvement extent, contributing to reliable in-hospital mortality prediction, highlighting the value of vascular metrics in improving patient stratification.

14.
Dis Markers ; 2021: 8863053, 2021.
Article in English | MEDLINE | ID: covidwho-1231192

ABSTRACT

INTRODUCTION: The clinical course of Coronavirus Disease 2019 (COVID-19) is highly heterogenous, ranging from asymptomatic to fatal forms. The identification of clinical and laboratory predictors of poor prognosis may assist clinicians in monitoring strategies and therapeutic decisions. MATERIALS AND METHODS: In this study, we retrospectively assessed the prognostic value of a simple tool, the complete blood count, on a cohort of 664 patients (F 260; 39%, median age 70 (56-81) years) hospitalized for COVID-19 in Northern Italy. We collected demographic data along with complete blood cell count; moreover, the outcome of the hospital in-stay was recorded. RESULTS: At data cut-off, 221/664 patients (33.3%) had died and 453/664 (66.7%) had been discharged. Red cell distribution width (RDW) (χ 2 10.4; p < 0.001), neutrophil-to-lymphocyte (NL) ratio (χ 2 7.6; p = 0.006), and platelet count (χ 2 5.39; p = 0.02), along with age (χ 2 87.6; p < 0.001) and gender (χ 2 17.3; p < 0.001), accurately predicted in-hospital mortality. Hemoglobin levels were not associated with mortality. We also identified the best cut-off for mortality prediction: a NL ratio > 4.68 was characterized by an odds ratio for in-hospital mortality (OR) = 3.40 (2.40-4.82), while the OR for a RDW > 13.7% was 4.09 (2.87-5.83); a platelet count > 166,000/µL was, conversely, protective (OR: 0.45 (0.32-0.63)). CONCLUSION: Our findings arise the opportunity of stratifying COVID-19 severity according to simple lab parameters, which may drive clinical decisions about monitoring and treatment.


Subject(s)
Blood Cell Count , COVID-19/blood , COVID-19/mortality , Clinical Decision Rules , Hospital Mortality , Severity of Illness Index , Adult , Aged , Aged, 80 and over , COVID-19/diagnosis , Female , Humans , Italy/epidemiology , Male , Middle Aged , Multivariate Analysis , Prognosis , Retrospective Studies
15.
Radiology ; 300(2): E328-E336, 2021 08.
Article in English | MEDLINE | ID: covidwho-1136121

ABSTRACT

Background Lower muscle mass is a known predictor of unfavorable outcomes, but its prognostic impact on patients with COVID-19 is unknown. Purpose To investigate the contribution of CT-derived muscle status in predicting clinical outcomes in patients with COVID-19. Materials and Methods Clinical or laboratory data and outcomes (intensive care unit [ICU] admission and death) were retrospectively retrieved for patients with reverse transcriptase polymerase chain reaction-confirmed SARS-CoV-2 infection, who underwent chest CT on admission in four hospitals in Northern Italy from February 21 to April 30, 2020. The extent and type of pulmonary involvement, mediastinal lymphadenopathy, and pleural effusion were assessed. Cross-sectional areas and attenuation by paravertebral muscles were measured on axial CT images at the T5 and T12 vertebral level. Multivariable linear and binary logistic regression, including calculation of odds ratios (ORs) with 95% CIs, were used to build four models to predict ICU admission and death, which were tested and compared by using receiver operating characteristic curve analysis. Results A total of 552 patients (364 men and 188 women; median age, 65 years [interquartile range, 54-75 years]) were included. In a CT-based model, lower-than-median T5 paravertebral muscle areas showed the highest ORs for ICU admission (OR, 4.8; 95% CI: 2.7, 8.5; P < .001) and death (OR, 2.3; 95% CI: 1.0, 2.9; P = .03). When clinical variables were included in the model, lower-than-median T5 paravertebral muscle areas still showed the highest ORs for both ICU admission (OR, 4.3; 95%: CI: 2.5, 7.7; P < .001) and death (OR, 2.3; 95% CI: 1.3, 3.7; P = .001). At receiver operating characteristic analysis, the CT-based model and the model including clinical variables showed the same area under the receiver operating characteristic curve (AUC) for ICU admission prediction (AUC, 0.83; P = .38) and were not different in terms of predicting death (AUC, 0.86 vs AUC, 0.87, respectively; P = .28). Conclusion In hospitalized patients with COVID-19, lower muscle mass on CT images was independently associated with intensive care unit admission and in-hospital mortality. © RSNA, 2021 Online supplemental material is available for this article.


Subject(s)
COVID-19/complications , Radiography, Thoracic/methods , Sarcopenia/complications , Sarcopenia/diagnostic imaging , Tomography, X-Ray Computed/methods , Aged , Female , Humans , Italy , Male , Middle Aged , Muscle, Skeletal/diagnostic imaging , Predictive Value of Tests , Retrospective Studies , SARS-CoV-2
16.
J Med Syst ; 45(3): 28, 2021 Jan 26.
Article in English | MEDLINE | ID: covidwho-1047302

ABSTRACT

Computer Tomography (CT) is currently being adapted for visualization of COVID-19 lung damage. Manual classification and characterization of COVID-19 may be biased depending on the expert's opinion. Artificial Intelligence has recently penetrated COVID-19, especially deep learning paradigms. There are nine kinds of classification systems in this study, namely one deep learning-based CNN, five kinds of transfer learning (TL) systems namely VGG16, DenseNet121, DenseNet169, DenseNet201 and MobileNet, three kinds of machine-learning (ML) systems, namely artificial neural network (ANN), decision tree (DT), and random forest (RF) that have been designed for classification of COVID-19 segmented CT lung against Controls. Three kinds of characterization systems were developed namely (a) Block imaging for COVID-19 severity index (CSI); (b) Bispectrum analysis; and (c) Block Entropy. A cohort of Italian patients with 30 controls (990 slices) and 30 COVID-19 patients (705 slices) was used to test the performance of three types of classifiers. Using K10 protocol (90% training and 10% testing), the best accuracy and AUC was for DCNN and RF pairs were 99.41 ± 5.12%, 0.991 (p < 0.0001), and 99.41 ± 0.62%, 0.988 (p < 0.0001), respectively, followed by other ML and TL classifiers. We show that diagnostics odds ratio (DOR) was higher for DL compared to ML, and both, Bispecturm and Block Entropy shows higher values for COVID-19 patients. CSI shows an association with Ground Glass Opacities (0.9146, p < 0.0001). Our hypothesis holds true that deep learning shows superior performance compared to machine learning models. Block imaging is a powerful novel approach for pinpointing COVID-19 severity and is clinically validated.


Subject(s)
Artificial Intelligence/standards , COVID-19/diagnostic imaging , Lung/diagnostic imaging , Tomography, X-Ray Computed/methods , Adult , Aged , Aged, 80 and over , Deep Learning/standards , Female , Humans , Italy , Male , Middle Aged , Reproducibility of Results , SARS-CoV-2 , Severity of Illness Index
17.
Sci Rep ; 10(1): 20731, 2020 11 26.
Article in English | MEDLINE | ID: covidwho-947552

ABSTRACT

Clinical features and natural history of coronavirus disease 2019 (COVID-19) differ widely among different countries and during different phases of the pandemia. Here, we aimed to evaluate the case fatality rate (CFR) and to identify predictors of mortality in a cohort of COVID-19 patients admitted to three hospitals of Northern Italy between March 1 and April 28, 2020. All these patients had a confirmed diagnosis of SARS-CoV-2 infection by molecular methods. During the study period 504/1697 patients died; thus, overall CFR was 29.7%. We looked for predictors of mortality in a subgroup of 486 patients (239 males, 59%; median age 71 years) for whom sufficient clinical data were available at data cut-off. Among the demographic and clinical variables considered, age, a diagnosis of cancer, obesity and current smoking independently predicted mortality. When laboratory data were added to the model in a further subgroup of patients, age, the diagnosis of cancer, and the baseline PaO2/FiO2 ratio were identified as independent predictors of mortality. In conclusion, the CFR of hospitalized patients in Northern Italy during the ascending phase of the COVID-19 pandemic approached 30%. The identification of mortality predictors might contribute to better stratification of individual patient risk.


Subject(s)
COVID-19/epidemiology , COVID-19/mortality , Pandemics , SARS-CoV-2/genetics , Age Factors , Aged , Aged, 80 and over , COVID-19/virology , Comorbidity , Female , Humans , Italy/epidemiology , Length of Stay , Male , Middle Aged , Retrospective Studies , Reverse Transcriptase Polymerase Chain Reaction , Risk Factors , Sex Factors , Smoking , Survival Rate
18.
Eur J Radiol ; 130: 109192, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-670315

ABSTRACT

OBJECTIVES: The goal of this study was to assess chest computed tomography (CT) diagnostic accuracy in clinical practice using RT-PCR as standard of reference. METHODS: From March 4th to April 9th 2020, during the peak of the Italian COVID-19 epidemic, we enrolled a series of 773 patients that performed both non-contrast chest CT and RT-PCR with a time interval no longer than a week due to suspected SARS-CoV-2 infection. The diagnostic performance of CT was evaluated according to sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and diagnostic accuracy, considering RT-PCR as the reference standard. An analysis on the patients with discrepant CT scan and RT-PCR result and on the patient with both negative tests was performed. RESULTS: RT-PCR testing showed an overall positive rate of 59.8 %. CT sensitivity, specificity, PPV, NPV, and accuracy for SARS-CoV-2 infection were 90.7 % [95 % IC, 87.7%-93.2%], 78.8 % [95 % IC, 73.8-83.2%], 86.4 % [95 % IC, 76.1 %-88.9 %], 85.1 % [95 % IC, 81.0 %-88.4] and 85.9 % [95 % IC 83.2-88.3%], respectively. Twenty-five/66 (37.6 %) patients with positive CT and negative RT-PCR results and 12/245 (4.9 %) patients with both negative tests were nevertheless judged as positive cases by the clinicians based on clinical and epidemiological criteria and consequently treated. CONCLUSIONS: In our experience, in a context of high pre-test probability, CT scan shows good sensitivity and a consistently higher specificity for the diagnosis of COVID-19 pneumonia than what reported by previous studies, especially when clinical and epidemiological features are taken into account.


Subject(s)
Betacoronavirus , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , Reverse Transcriptase Polymerase Chain Reaction/methods , Tomography, X-Ray Computed/methods , Adult , COVID-19 , Coronavirus Infections/diagnostic imaging , Female , Humans , Italy , Lung/diagnostic imaging , Male , Middle Aged , Pandemics , Pneumonia, Viral/diagnostic imaging , Reproducibility of Results , Retrospective Studies , SARS-CoV-2 , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL